

Heap Analysis with Collections

Mark Marron
Deepak Kapur

Darko Stefanovic
Manuel Hermenegildo

University of New Mexico
marron@cs.unm.edu

PASTE 2007

mailto:marron@cs.unm.edu

Shape Analysis Results
● Aliasing
● Connectivity

● Reachability
● Interference
● Paths

● Logical data structures (Regions)
● Group related sections of the heap
● Keep unrelated sections of the heap separate

● Shape of a region
● Cycle, Dag, Tree, List, Singleton

Why Collections?

Java, C++/STL provide a wide range of standard
collections that are used in almost any non-trivial

program.

Modeling Collections is Hard

● Collection implementations are often complex
and difficult to analyze
● Some techniques are efficient but are unable to

accurately model the complexities of the
implementation

● Some techniques can analyze all the complexities of
the implmentations but are computationally
expensive

Proposed Approach

 Model the collections using abstracted
semantics

 Represent all the pointers stored in a collection
via a summary representation

 When accessing the contents of the collection
make the specific element being accessed
explicit

 Use the concept of Iterators to define an order
for the collection so we can track progress of
loops etc.

Abstract Domain

● Classic heap graph model
● Nodes represent regions (sets of objects)
● Edges represent sets of pointers

● Add extra abstract properties to nodes
● Types of the concrete memory represented
● Total size
● Internal structure

● Add extra abstract properties to the edges
● Max number of parallel pointers
● Potential that pointers interfere

Internal Structure

● Connectivity of incident edges
● Do two incident edges represent pointers that refer

to the same memory location or to connected
memory locations?

● Internal layout
● What is the “Shape” of the concrete memory

locations that this node represents?

Connectivity

Memory locations c and d are disjoint.
Edges E, F are disjoint.
Region Z has a singleton layout shape.

Connectivity

Memory locations c and d are connected.
Edges E, F are connected.
Region Z has a list layout shape.

Interference

•Connectivity tracked the possibility that two
distinct edges represent pointers that are
connected.
•Interference tracks the possibility that two
pointers represented by the same edge are
connected.

Interference

Memory locations c and d are disjoint.
Edge E is non-interfering (np).

Interference

Memory locations c and d are connected.
Edge E is interfering (ip).

Fill a Set

set<t1> p = new set<t1>()
t1 q
t2 s = new t2()
for(int i = 0; i < MAX; ++i)
{
 q = new t1()
 q.val = s
 p.insert(q)
}

Added First Element

Added Second Element

Normal Form + Fixpoint

Partitioning the Pointers in a
Collection

 We have seen the special identifier for the
summary edge ”?”

 Now we use the order induced by the
collections iterator to define 3 other identifiers
 ”@” to represent the specific pointer in the

collection of interest
 ”B@” to represent all the pointers that come before

the pointer of interest
 ”A@” to represent all the pointers that come after

the pointer of interest

Refinement

 The ”?” edge is split into two/three new edges
one representing the specific pointer of interest
”@” and the others representing the rest of the
pointers ”B@” and ”A@”.

 The nodes can be split as well, into the specific
targets of the ”@”, ”A@” and ”B@” edges.

 Other edges are then split as needed to
connect the newly created nodes.

Initial Set

Refined Heap for Iterator Begin

For Each in Set

t2 r = new t2()
iterator i = p.begin()
while(i.isValid())
{
 (i.get()).val = r
 i.advance()
}

Initalize Iterator and Allocate New
Target

Update Current Element

Advance Iterator

Second Assign and Advance

Normalize and Fixpoint

Interpret isValid as False

Experimental Analysis

 To test the accuracy of the shape analysis
results we utilize the information to perform
thread-level parallelization

 We modified a number of the Jolden
benchmarks to use our collection libraries

 Based on the shape information we parallelized
loops and tree calls

 Our test machine is a (dual core) Pentium D at
2.8GHz with 1GB of RAM

Parallelization Results

bh em3d health power tsp
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Speedup Relative to Serial Execution

Analysis Runtime

bh em3d health power tsp
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

2.75

3

3.25

3.5

3.75

Time to analyze in Seconds

Conclusion
 Our semantics-based approach to modeling

collections is an effective way to handle them in
a shape analysis.

 The major issue is the transformation from
summary representations of the contents into
more explicit forms.

 The notion of iterator order is an effective
technique to model progress in the processing
of collections.

 These features enable strong updates on single
elements in the collection and on the collection
itself.

Questions?

